Predicting vascular plant diversity in anthropogenic peatlands: Comparison of modeling methods with free satellite data

Peatlands are ecosystems of great relevance, because they have an important number of ecological functions that provide many services to mankind. However, studies focusing on plant diversity, addressed from the remote sensing perspective, are still scarce in these environments. In the present study, predictions of vascular plant richness and diversity were performed in three anthropogenic peatlands on Chiloé Island, Chile, using free satellite data from the sensors OLI, ASTER, and MSI. Also, we compared the suitability of these sensors using two modeling methods: random forest (RF) and the generalized linear model (GLM). As predictors for the empirical models, we used the spectral bands, vegetation indices and textural metrics. Variable importance was estimated using recursive feature elimination (RFE). Fourteen out of the 17 predictors chosen by RFE were textural metrics, demonstrating the importance of the spatial context to predict species richness and diversity. Non-significant differences were found between the algorithms; however, the GLM models often showed slightly better results than the RF. Predictions obtained by the different satellite sensors did not show significant differences; nevertheless, the best models were obtained with ASTER (richness: R2 = 0.62 and %RMSE = 17.2, diversity: R2 = 0.71 and %RMSE = 20.2, obtained with RF and GLM respectively), followed by OLI and MSI. Diversity obtained higher accuracies than richness; nonetheless, accurate predictions were achieved for both, demonstrating the potential of free satellite data for the prediction of relevant community characteristics in anthropogenic peatland ecosystems.
  • Authors: Castillo-Riffart, I., Galleguillos, M., Lopatin, J., Perez-Quezada, J.F.
  • Author Affiliation: Department of Environmental Science and Renewable Natural Resources, University of Chile, Casilla 1004, Santiago, 8820808, Chile, Center for Climate Resilience Research (CR)2, University of Chile, Santiago, 8370449, Chile, Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, Karlsruhe, 76131, Institute of Ecology and Biodiversity, Las Palmeras 3425, Santiago, 7800003, Chile
  • Subjects: plant communities, peatlands, remote sensing, mapping, sphagnum, wetlands
  • Publication type: Journal Article
  • Source: Remote Sensing 9(7): 681
  • Year: 2017
  • DOI:
Latest posts


Founding member states
Republic of Indonesia Republic of the Congo Democratic Republic of the Congo Republic of Peru
Coordinating partners
Ministry of Environment and Forestry Republic of Indonesia CIFOR UN Environment FAO