Neotropical peatland methane emissions along a vegetation and biogeochemical gradient
Academic Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively). Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published. © 2017 Winton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
publication date
has subject area
published in
geographic focus
Research
keywords
-
emissions
-
neotropical regions
-
peat soils
-
peatlands
-
soil chemistry
-
tropics
-
water table
-
wetlands
Identity
Digital Object Identifier (DOI)
Additional Document Info